TY - BOOK AU - Berlinghoff,William P. AU - Gouva��?�,Fernando Q. TI - Math through the ages: a gentle history for teachers and others SN - 1881929213 AV - QA21 .B47 2002 PY - 2002/// CY - Farmington, Me. PB - Oxton House Publishers KW - Mathematics KW - History N1 - Includes bibliographical references (p. 199-206) and index; [pt. 1]; History in the mathematics classroom --; [pt. 2]; The history of mathematics in a large nutshell --; Beginnings --; Greek mathematics --; Meanwhile, in India --; Arabic mathematics --; Medieval Europe --; The 15th and 16th centuries --; Algebra comes of age --; Calculus and applied mathematics --; Rigor and professionalism --; Abstraction, computers, and new applications --; Mathematics today --; [pt. 3]; Sketches --; 1; Keeping count : writing whole numbers --; 2; Reading and writing arithmetic : where the symbols come from --; 3; Nothing becomes a number : the story of zero --; 4; Broken numbers : writing fractions --; 5; Something less than nothing : negative numbers --; 6; By tens and tenths : metric measurement --; 7; Measuring the circle : the story of [pi] --; 8; The Cossic art : writing algebra with symbols --; 9; Linear thinking : solving first degree equations --; 10; A square and things : quadratic equations --; 11; Intrigue in Renaissance Italy : solving cubic equations --; 12; A cheerful fact : the Pythagorean theorem --; 13; A marvelous proof : Fermat's last theorem --; 14; On beauty bare : Euclid's plane geometry --; 15; In perfect shape : the platonic solids --; 16; Shapes by the numbers : coordinate geometry --; 17; Impossible, imaginary, useful : complex numbers --; 18; Half is better : sine and cosine --; 19; Strange new worlds : the non-Euclidean geometries --; 20; In the eye of the beholder : projective geometry --; 21; What's in a game : the start of probability theory --; 22; Making sense of data : statistics becomes a science --; 23; Machines that think : electronic computers --; 24; The arithmetic of reasoning : logic and Boolean algebra --; 25; Beyond counting : infinity and the theory of sets ER -